FACTSHEET 2022: ESG update CO2PL

Date: 21-11-2023 Version: 2.0

Author: Jorg Peters/ Born Goedkoop/ Raul Hortes

Method

The CO2 Performance Ladder is a certification program for organizations that are actively working to reduce their CO2 emissions. FCC has achieved Level 5, which means that they have a comprehensive understanding of their energy consumption and CO2 emissions, have ambitious goals for reduction, are taking a leading role in the construction industry in promoting sustainability, and are taking responsibility for reducing their energy consumption and CO2 emissions throughout their value chain. To stay at level 5 the company must meet a fixed set of requirements, from four angles: Angle A - Insight:

Determining the energy flows within the company, including all fixed locations within FCC NL and the VeenIX project, and the resulting CO2 Emission Inventory.

Angle B - CO2 - Reduction:

Implement savings measures. General objectives and subdivided into S1, S2 and S3 objectives with concrete measures.

Angle C - Transparency:

The internal and external communication of the findings. Angle D - Participation:

Participation in initiatives in which the company cooperates with other companies in the field of CO2 reduction (e.g., industry associations, collaborative projects).

The aim is to demonstrably incorporate these requirements into business operations. In doing so, we use the Deming cycle, plan, do, check, and act.

A-Insight

A periodic insight into CO_2 emissions, a concrete policy and package of measures to achieve reductions form the foundation of the ladder. In practice, the CO_2 Performance Ladder results in structural cost savings within the own organization and on the projects. The insight into energy consumption, this is based on all financial data (sustainability report) of FCC NL: Graphics states: I - Energy (scope 1 and 2), II - CO2 emissions (Scope 1, 2 and BT) and III - Scope 3

Insight into the Energy inventory over the past three years can be found in the graph below (Scope 1 and 2)

I - ENERGY (KWH) FROM FCC GROUP

Below you will find inventory of GHG-emissions per scope

II - EMISSION INVENTORY IN T CO2 FROM FCC GROUP

III - MME SCOPE 3 EMISSIONS PER YEAR FROM FCC GROUP

Scope 3 (Full Scope 3 see Sustainability Report 2022)

Below - Forecast and total GHG Emissions 2020 – 2028 (VEENIX):

T CO2 EMISSIONS FORECAST

2022 Scope 3 emissions (tCO2e)

BoF is done by FCC Group and with dataset from CO2emissiefactoren.nl. MRE and MME are done with NMD/EcoInvent (LCA) version 3.8 and usages of stages A4 and A5.

B- CO2-reduction VFCC NL

The CO2 Performance Ladder aims to implement reduction measures on the project VEENIX. The relation between the EU CO_2 reduction targets and the reduction targets of FCC NL can be found below:

At FCC, most of the CO₂ emissions will take place at the construction site. Therefore to take big steps to reduce CO_2 emissions it makes more sense to do so where there is the most emission. Therefore, the reduction measures are focused on the construction sites instead of the office. The proposal for CO_2 reduction (in %)concerning the materials can be found in the graph below:

One of the measures is that green electricity is purchased on all new projects.

The big advantage of this is that due to the large increase in the demand for demonstrably green electricity, the supply of this will also increase rapidly.

The big advantage of this is that due to the large increase in the demand for demonstrably green electricity, the supply of this will also increase rapidly.

The reduction for scope 3, mainly upstream purchased goods, can be further subdivided into four main groups. The realized reduction will follow later in time:

	Reduction target	
Scope 1	300 ton CO2eq	0
Scope 2	300 ton CO2eq	0
Scope 3	29.400 ton CO2eq	14.000

Table Reductions targets vs real estimation based on VO design

	Measure	Reduction target	Realised
Scope 3 – Asphalt	50% PR	3.500 ton CO2eq	
Scope 3 – Concrete	Reuse	9.250 ton CO2eq	
Scope 3 - Ground	Distance	21.000 ton CO2eq	
Scope 3 - metals	Recycling	1.250 ton CO2eq	4.500 ton CO2eq

Table Reductions targets vs real estimation based on VO design

Transparency

Up-to-date information is important for knowledge exchange and stimulation of innovation. Sharing efficient solutions inspires others. This also ensures that each other's good ideas can be used on project components and entities. For level 5, communication went from ad hoc to structural communication efforts internally and externally.

Participation

In 2022 FCC (NL) is looking at working together with others on our reduction measures such as re-using concrete beams (NGO Initiative) or an e-driver initiative.

Data above is derived from:

- 2020 GHG emissions report FCC Construcción page 39
- 2021 GHG emissions report FCC Construcción page 37
- 2022 GHG emissions report FCC Construcción page 38

For the year 2020 we did not make our own calculation. For 2021 there were no calculations made for scope 3.

Emissions based on ISO 14064-1 and ISO 50001 Boundary FCC NL

Scope 1 D	oirecte emiss	sies							
S1.1	Actor	Fuel used (Gas) office				2022	eenh	2022	eenh
		Schurenbergweg 6		2,08	5 kg CO₂/Nm3 brandstof *)	37.969,00	Nm3	370.919	kWh
S1.2		Business car travel							
		Leaseauto's		Cf	Eenheid	2022	eenh	2022	eenh
		Gasoline 98		2,82	l kg CO₂/liter brandstof	214,79	litre		
		Gasoline 95		2,82	l kg CO₂/liter brandstof	8.326,93	litre		
		Diesel		3,26	2 kg CO₂/liter brandstof	1.929,98	litre		
S1.3		Fuel used generators				2022	eenh	2022	eenh
		Diesel		3,26	2 kg CO₂/liter brandstof	204.820,00	Liter		
Scope 2 e	missies of in	ndirecte emissies							
S2.1		Energieverbruik offices							
		Green energy from EU sour	ce	Cf	Eenheid	2022	eenh	2022	eenh
		Schurenbergweg 6	EU Wind	0,52	g CO₂/kiloWattuur	183.753,00	kWh		
S2.2		Energy use production loca	tions						
		Green energy from EU sour	ce	Cf	Eenheid	2022	eenh	2022	eenh
		Middeldorpstraat 7	EU Wind	0,52	8 kg CO₂/kiloWattuur	15.169,81	kWh		
		Ouderkerkerlaan 36	EU Wind	0,52	8 kg CO₂/kiloWattuur	2.433,20	kWh		
		Ouderkerkerlaan 50	EU Wind	0,52	8 kg CO₂/kiloWattuur	20.544,58	kWh		
		Rijksweg A9	EU Wind	0,52	8 kg CO₂/kiloWattuur	4.158,00	kWh		
Scope 3 e	missies of o	verige indirecte emissies							
S3.1		Indirect emissies		Cf	Eenheid	2022	eenh	2022	eenh
		Flights		0,17	2 kg CO₂/km	343261,1	km		
S3.1		Materials		Cf	Eenheid	2022	eenh	2022	eenh
		Asphalt			kgCO2/Ton	6.672,00	Ton		
		Concrete			kgCO2/Ton	1.678,00	Ton		
		Ground			kgCO2/Ton	2.166.039,00	Ton		
		Steel			kgCO2/Ton	12.963,00	Ton		
		Other			kgCO2/Ton	6.368,00	Ton		

.

777,7	Ton CO₂e
79,2	Ton CO₂e
79,17	Ton CO₂e
30,4	Ton CO₂e
0,6	Ton CO₂e
23,5	Ton CO₂e
6,3	Ton CO₂e
668,1	
668,1	Ton CO₂e
118,2	
96,1	Ton CO₂e
	Ton CO₂e
96,1	Ton CO₂e
22,1	Ton CO₂e
22,1	Ton CO₂e
7,9	Ton CO₂e
1,3	Ton CO₂e
10,7	Ton CO₂e
2,2	Ton CO₂e
11.864,0	Ton CO₂e
59 <i>,</i> 0	Ton CO₂e
59,0	Ton CO₂e
11.805,0	Ton CO₂e
204,0	Ton CO₂e
2.301,0	Ton CO₂e
7.727,0	Ton CO₂e
1.506,0	Ton CO₂e
67,0	Ton CO₂e

